
COMMENTARY

Can remote sensing of land cover improve species
distribution modelling?

Remote sensing has been used as a tool for

mapping land cover since sources of data

became readily available in the 1970s. Spec-

tral, temporal, and textural differences

among satellite images allow users to distin-

guish among broad classes of vegetation.

However, the applicability of remote sensing

to classification breaks down at the species

level. General categories of vegetation, such

as deciduous and coniferous forests, can be

separated, provided patches are relatively

homogenous, but species with similar

growth forms, for example pine and fir, are

problematic. Hence, there is a gap between

what an ecologist would like from remote

sensing – a map of tree species – and what

can be delivered – a map of forest types.

Land cover maps derived from remote

sensing often are not detailed enough to

improve predictions of species distributions

based on ecological niche modelling or

similar approaches. In addition, land cover

classification yields a fairly small number of

nominal variables (e.g. deciduous forest,

coniferous forest, mixed forest, grassland).

By contrast, climatic and topographic data

typically have a greater range of continuous

values, and are more often used for predict-

ing species distributions (Guisan & Zim-

mermann, 2000). This is especially true

across large regions with grossly similar

land cover (for example forests in the

Amazon Basin).

Many animal species do not rely on a

single species of plant to define their habitat

or the quality of that habitat; birds are

thought to respond to vegetation structure

in addition to composition, particularly at

coarse scales (e.g. MacArthur et al., 1966;

Rotenberry, 1985) and in temperate regions.

The structural complexity of vegetation

and the relative proportion of cover in the

understorey, shrub layer, and canopy

encompass a suite of characteristics (for

example nest predation risk, abundance and

diversity of food resources, microclimate)

that strongly affect the quality of habitat for

nesting and relative nest success (Wiens,

1989). Some of these integrated landscape

characteristics can be measured with remote

sensing.

Derived products, such as land cover

maps, are only one element of a wealth of

remote sensing data. Could remote sensing

provide information on other landscape

characteristics that affect the distribution

of animal species? For example, even if

vegetation composition is unknown, could

variables such as overall greenness and

seasonality be associated with occurrence

patterns?

Buermann et al. (2008) explored the

latter questions for several species of birds,

mammals, and trees in the Amazon Basin.

They found that distribution models that

included topographic, climatic, and remote

sensing-derived vegetation variables often

were more accurate than models that

included only topographic and climatic

variables. Rather than using a land cover

map to model species distribution, Buer-

mann et al. used indices of vegetation and

radar scattering data, both of which provide

a much greater range of continuous data

values than vegetation classification alone.

This approach may lead to improved mod-

els of species distributions if appropriate

remote sensing data are selected as input

variables.

The array of global remote sensing data,

ranging from surface reflectance to thermal

emissivity, and of derived products, ranging

from leaf area index (LAI) to tree cover, can

be overwhelming. Additional remote sens-

ing data sets with the potential for improv-

ing distribution models include topographic

data from the shuttle radar topography

mission (SRTM) and precipitation data

from the tropical rainfall measuring mission

(TRMM). Here, we focus only on remote

sensing data specifically related to vegeta-

tion. As for any ecological model, the most

appropriate remote sensing data for models

of species distributions will vary taxonom-

ically and geographically, but some general

information can guide the selection of

vegetation variables derived from remote

sensing.

The normalized difference vegetation

index (NDVI), a proxy for photosynthetic

activity, is commonly used for assessing

landscape characteristics. It can be derived

from readily available data [for example

Landsat and Moderate Resolution Imaging

Spectroradiometer (MODIS)]. Other indi-

ces, such as LAI, the enhanced vegetation

index (EVI), and the fraction of photosyn-

thetically active radiation (fPAR), also

relate to overall greenness and productivity.

Mean annual NDVI has been shown to

correlate with the species richness of birds

in a desert ecosystem (Seto et al., 2004),

and may relate to the distributions of

individual species (B. Dickson et al.,

unpublished data).

Vegetation phenology, derived from

NDVI or other vegetation indices, may also

provide insight into habitat quality. For

example, the starting date of the growing

season derived from time series of NDVI has

been used to predict malarial outbreaks in

Africa, implying a link between mosquito

life cycles and changes in NDVI (Rogers

et al., 2002). In another study, Osborne

et al. (2001) showed that the timing and

amplitude of NDVI-derived land surface

phenology in Spain differed among sites at

which Great Bustards (Otis tarda L.) were

present or absent, suggesting that ecosystem

phenology helps to define the species’ hab-

itat. Time series phenological markers that

may prove useful for species distribution

modelling include start date and length of

the growing season, and date of maximum

greenness as well as the more commonly

used mean, maximum, and amplitude of

NDVI.

Another influence on species distribu-

tions that cannot be estimated with climate

variables alone is land use. For example,

deforestation reduces the extent and quality

of habitat for many species. Data on defor-

estation can be derived from remote sensing

and included in a distribution model. Other

GIS-based land-use layers (for example

roads) can also be used to model habitat

quality, but in areas where human activity is
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poorly documented, remote sensing has

particular value.

Active radar or lidar measurements

provide further potential for measuring

structural characteristics of vegetation.

Currently, lidar data, which measure canopy

and understorey heights based on the

strength and timing of the return of a

long-wavelength laser (Lefsky et al., 2002),

are not available globally. However, Buer-

mann et al. (2008) showed that radar data

from QuikSCAT (a sensor initially designed

to measure ocean roughness) provided bet-

ter models of the distributions of bird

species than did LAI data. Radar data are

sensitive to moisture content and canopy

roughness, which may be more relevant than

LAI to Buermann et al.’s target species, and

they are also more sensitive than vegetation

indices to spatial heterogeneity in forests.

A great strength of remote sensing-

derived vegetation variables as compared

with climatic variables is their wide spatial

and temporal coverage. Since 1982, global-

scale 8-km resolution NDVI data have been

available as monthly products from the

advanced very high-resolution radiometer

(AVHRR) satellite (Tucker et al., 2005).

Since 2000, global-scale 1-km resolution

NDVI, EVI, LAI, and fPAR data have been

available as bi-weekly products from

MODIS. Remote locations hundreds of

kilometres from a weather station have been

imaged repeatedly. Such coverage will never

be possible for climatic variables, which

typically are interpolated from weather

station data. Climatic variables derived from

remote sensing (for example TRMM) are

promising, but average climatologies are

currently available at coarse resolution only

(0.25� for TRMM). In areas with sparse

weather stations, remote sensing data on

vegetation may even provide a better proxy

for climate than climate interpolations.

Because vegetation data may act as a

proxy for climate it can be difficult to

determine the extent to which species dis-

tributions respond to vegetation structure

per se. For example, an association between

the distribution of a given bird and LAI

could imply either that habitat quality is

directly affected by vegetation productivity

or that habitat quality is a function mainly

of climate, which affects both birds and

vegetation. In this case, remote sensing data

may identify patterns, but observational or

manipulative field studies may be necessary

to understand the underlying mechanisms.

Despite wall-to-wall coverage, remote

sensing data are frequently subject to cloud

disruption. Many parts of the Earth,

particularly the tropics, are extensively

cloud-covered, making it difficult to derive

average greenness estimates and phenolog-

ical markers. Active sensors, including

radar, penetrate cloud cover more reliably.

If cloud contamination is known, remote

sensing metrics that reduce cloud impact,

such as annual maximum NDVI, can also

be used. Furthermore, time series interpo-

lation techniques, such as Gaussian or

spline-based curve fits, reduce the impact

of clouds (Jonsson & Eklundh, 2002; Brad-

ley et al., 2007), and temporal averaging can

minimize cloud error. However, the inclu-

sion of cloud-prone data in a species

distribution model may add more noise

than signal.

A final challenge lies in the interpretation

of remote sensing data. Understanding the

ecological importance of vegetation green-

ness on quality of habitat for a given species

is straightforward, but interpreting the

influence of, for example, radar scattering

on habitat quality is more difficult. Radar

data may be related to canopy roughness,

moisture level, and biomass, but the link

between the remote sensing product and

habitat quality is indirect. The trade-off of

an improved species distribution model may

be reduced ecological meaning.

Remote sensing data on vegetation are

intriguing complements to climatic and

topographic variables for species distribu-

tion modelling. Although land cover classi-

fications derived from remote sensing are of

limited use for distribution models, remo-

tely sensed time series for other attributes of

vegetation could add another dimension of

information. Vegetation structure, produc-

tivity and phenology may influence the

quality of habitat for some species to the

same extent as temperature and precipita-

tion. Creative approaches, inclusive of

multiple data sources, can only improve

future species distribution modelling efforts.
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